タグ: MLエンジニア認定

  • 【Google認定MLエンジニア】効率的なトレーニングのためのデータ整理

    【Google認定MLエンジニア】効率的なトレーニングのためのデータ整理

    効率的なデータ整理と前処理は、スケーラブルかつ高精度な機械学習(ML)モデルの構築において重要です。Google Cloudは、データの種類やMLワークフローに応じたさまざまなツールとサービスを提供しています。本ガイドでは、効率的なトレーニングのためのデータ整理について、GCP Professional ML Engineer認定に沿った体系的なベストプラクティスを紹介します。


    1. 基本原則

    • 自動化: 手動エラーを減らし、一貫性を向上。
    • スケーラビリティ: 大規模データセットへの対応が必要。
    • MLライフサイクル全体の一貫性: データの取り込みからデプロイまで統一的に管理。
    • リアルタイムとバッチ処理の両立: ストリーミングとバッチの両ワークフローをサポート。
    • 特徴量の一貫性: トレーニングと推論で特徴量を一致させる。

    2. ツールとサービス

    a. Vertex AI Pipelines

    • 用途: 前処理、トレーニング、デプロイメントまでのMLワークフロー自動化。
    • 強み: 一貫性、スケーラビリティ、完全自動化。
    • 対象データタイプ: 全データタイプ(表形式、画像、音声、時系列)。

    b. Dataflow

    • 用途: 大規模データのバッチ/ストリーミング処理、データ拡張。
    • 強み: 高いスケーラビリティと効率性。
    • 対象データタイプ: 全データタイプ、特にリアルタイムストリーミングや大規模データ。

    c. Vertex AI Feature Store

    • 用途: 表形式特徴量の一貫した管理と提供。
    • 強み: 特徴量の一貫性確保、重複排除。
    • 対象データタイプ: 表形式(音声、画像、時系列データには不向き)。

    d. Cloud Storage

    • 用途: 生データ(画像、音声、テキスト)の格納。
    • 強み: 大容量データに対応可能なコスト効率の良いストレージ。
    • 対象データタイプ: 全データタイプ。

    e. BigQuery

    • 用途: 大規模データセット(主に表形式)のクエリ処理、音声テキストの検索。
    • 強み: 高速な分析クエリ処理。
    • 対象データタイプ: 表形式・文字起こしテキスト

    f. Cloud Speech-to-Text API

    • 用途: 音声データをテキストに変換。
    • 強み: 音声の自動文字起こし、後続処理が容易。
    • 対象データタイプ: 音声

    3. データタイプ別ベストプラクティス

    A) 表形式データ(例:購買履歴)

    • 特徴量管理: Vertex AI Feature Store を使用。
    • 前処理: Dataflow でバッチ/ストリーミング処理。
    • 自動化: Vertex AI Pipelines でワークフローを自動化。

    推奨戦略:

    • Vertex AI Feature Store(特徴量の一貫性管理)。
    • Dataflow(リアルタイム/バッチ前処理)。

    B) 音声データ(例:音声認識)

    • 格納: Cloud Storage に音声ファイルを保存。
    • 文字起こし: Cloud Speech-to-Text API を利用。
    • 前処理: Dataflow で音声またはテキストデータを前処理。

    推奨戦略:

    • Cloud Storage + Dataflow(格納と前処理)。
    • Cloud Speech-to-Text API + BigQuery(文字起こしとクエリ処理)。

    C) 画像データ(例:ラベル付き画像)

    • 格納: Cloud Storage に画像を保存。
    • 前処理・拡張: Dataflow で画像前処理やデータ拡張を行う。
    • 自動化: Vertex AI Pipelines で前処理とトレーニングを自動化。

    推奨戦略:

    • Cloud Storage + Vertex AI Pipelines(格納と自動化)。
    • Dataflow(前処理と拡張)。

    D) 時系列データ(例:金融予測)

    • 前処理・拡張: Dataflow で欠損データ処理やデータ拡張。
    • 自動化: Vertex AI Pipelines でワークフローを自動化。

    推奨戦略:

    • Vertex AI Pipelines(エンドツーエンドの自動化)。
    • Dataflow(前処理と拡張)。

    4. よくある落とし穴

    • 手動前処理(Cloud FunctionsやSQL): エラーが発生しやすく、スケーラビリティが低い。
    • Feature Storeの誤用: 表形式特徴量専用であり、生の音声・画像・時系列データには不向き。

    5. まとめ表

    データタイプ 格納 前処理 特徴量管理 自動化
    表形式 Cloud Storage Dataflow Vertex AI Feature Store Vertex AI Pipelines
    音声 Cloud Storage Dataflow、Speech-to-Text なし Vertex AI Pipelines
    画像 Cloud Storage Dataflow(拡張含む) なし Vertex AI Pipelines
    時系列 Cloud Storage Dataflow(拡張含む) なしまたはPipelines内で管理 Vertex AI Pipelines

    6. 試験対策ポイント

    • 自動化・スケーラブルなソリューションを優先: DataflowVertex AI Pipelines が中心。
    • Vertex AI Feature Storeは表形式特徴量専用
    • 手動処理(Cloud FunctionsやSQL)は避ける: スケーラビリティや信頼性が低下。