タグ: MLエンジニア

  • GCPにおけるJupyter Backendの選定と構成ポイント

    GCPにおけるJupyter Backendの選定と構成ポイント

    ~Vertex AI Workbench、Dataproc、TFX連携を中心に~

    はじめに

    GCP上でのJupyterノートブック環境の構築は、データサイエンティストやMLエンジニアがモデル開発・データ分析を行う上で不可欠です。本記事では、GCP Professional Machine Learning Engineer試験で問われる「Jupyter backend selection」に関する代表的なユースケースと、環境ごとの構成ポイントをまとめます。


    1. Vertex AI Workbench を使った BigQuery 分析

    ユースケース

    • データサイエンティストが BigQuery上の大規模データJupyter環境で分析

    必要な構成変更

    • Vertex AI Workbenchのインストール
    • ✅ **
      ✅ 正しい pandas_gbq のimport文の使用** (誤ってpandasから読み込んでいるケースに注意)

    不要な変更

    • ❌ 認証設定はNotebook実行環境で自動付与される
    • ❌ クエリ構文自体はBigQuery仕様に準拠していれば問題なし

    試験対策ポイント

    • pandas_gbqfrom pandas_gbq import read_gbq のように正確にインポート
    • vaiw.display(df) のようなVertex AI Workbench固有関数の使用に慣れる

    2. Dataproc を用いた Jupyter with Spark

    ユースケース

    • 分散処理が必要な大規模データ分析や、Spark MLlibを活用したモデル開発

    必須構成

    • --optional-components=ANACONDA,SPARK,JUPYTER のように

    Jupyter および Spark をオプションコンポーネントとして追加する

    • ✅ 単一ノード構成(--single-node)でもテスト環境としては有効

    試験対策ポイント

    • --image-version によって使えるコンポーネントが制限される場合があるため、バージョン互換 も確認する

    3. TensorFlow Extended (TFX) + Jupyter の統合

    ユースケース

    • MLパイプラインの定義・テスト をJupyter上で行い、TFXによるデプロイまで進める

    構成の必須ポイント

    • tfxモジュールの正確なimport(import tfx.orchestration.pipeline など)
    • components=[] にてパイプライン構成要素(ExampleGen, Trainer等)を明示的に追加

    注意点

    • LocalDagRunner() はローカル実行用で問題なし
    • ❌ Cloud SQLとの接続(metadata_path)は不要な場合が多い

    4. DataprocでのBigQuery連携の最適化

    ユースケース

    • SQLでBigQueryからデータ抽出・整形を行い、DataprocのSpark処理と連携

    構成変更ポイント

    • SQLクエリの最適化 (不要なカラムの除外、絞り込みの明確化など)
    • テーブル作成時のパーティショニング の追加でパフォーマンス改善

    試験対策ポイント

    • CREATE TABLEの記述時に PARTITION BY を使うとクエリ高速化に有効

    まとめ:Backend選定時の意思決定表

    使用目的推奨Backend主な特徴試験で問われる設定ポイント
    BigQuery分析Vertex AI WorkbenchGUI付きJupyter、pandas_gbq連携vaiw.display(), pandas_gbq import
    Spark分析Dataproc分散処理、スケーラブル–optional-components へのSPARK/JUPYTER追加
    MLパイプラインVertex AI or local Jupyter + TFXパイプライン開発・実験向け正しいTFX importとcomponents定義
    大規模SQL前処理Dataproc + BigQuerySQL最適化、Spark処理前段SQL最適化+パーティショニング

    試験対策アドバイス

    • 構文エラーではなく構成ミスに注目!

    各問題で問われるのは、多くの場合構文そのものより ライブラリのimport必要コンポーネントの指定漏れ

    • 単一ノード vs 複数ノードの判断は問題文の文脈に依存

    試験では「チームで使う」か「個人でローカルテスト」かを見極めるのがポイント。

    • Vertex AIとDataprocの使い分け

    分析・探索的作業ならVertex AI、スケーラブル処理や本番デプロイを意識するならDataprocが主流。

  • 【Google認定MLエンジニア】Data Preparation for AutoML 完全ガイド

    【Google認定MLエンジニア】Data Preparation for AutoML 完全ガイド

    AutoMLを効果的に活用するためには、**データ準備(Data Preparation)**が不可欠です。このプロセスでは、データをクリーンで一貫性があり、機械学習モデルに適した形式に整えます。本記事では、Google Cloudの各サービスを用いたAutoML向けのデータ準備方法を、ユースケース別に体系的に整理します。


    🧩 1. データ準備の主要ステップ

    ステップ 説明 主要サービス
    特徴量選択 (Feature Selection) 重要な特徴量を選定してモデル性能を最適化 BigQuery, BigQuery ML
    欠損値処理 (Missing Data Handling) 欠損値を適切に補完してデータの完全性を保つ Dataflow, Cloud Dataprep
    特徴量エンコーディング (Encoding) カテゴリカルデータを数値データへ変換してモデルが処理しやすい形式に整える BigQuery ML
    正規化 (Normalization) 数値データのスケールを統一し、学習を安定化 Cloud Dataprep, BigQuery ML
    データラベリング (Data Labeling) 目的変数(ターゲット変数)のラベル付けを行い、教師あり学習に備える Vertex AI Data Labeling
    言語統一 (Language Consistency) テキストデータにおいて多言語のばらつきを防ぎ、一貫した解析を可能にする Cloud Translation API
    特徴量管理 (Feature Management) 特徴量を一元管理し、モデルへの供給を効率化 Vertex AI Feature Store

    🏢 2. ユースケース別のアプローチ

    ① 小売業での売上予測(タブラー形式データ)

    目標:AutoMLで売上を予測するために、データ準備を行う。

    タスク 推奨アクション ツール
    特徴量選択 重要な特徴量をBigQueryで分析 BigQuery
    欠損値処理 Dataflowでデータクリーニングおよび欠損補完 Dataflow
    特徴量管理 Vertex AI Feature Storeで特徴量を管理・提供 Vertex AI Feature Store

    ② 医療業界での患者アウトカム予測(カテゴリカル+数値データ)

    目標:AutoMLで患者の予後を予測するため、データを整える。

    タスク 推奨アクション ツール
    カテゴリカルエンコーディング BigQuery MLでカテゴリカル変数を数値化 BigQuery ML
    数値データ正規化 Cloud Dataprepで数値変数を正規化 Cloud Dataprep
    欠損値処理 Dataflowでインピューテーション技法を適用 Dataflow

    ③ Eコマースのカスタマーレビュー分析(テキストデータ)

    目標:AutoMLでレビューを分析し、顧客満足度スコアを予測する。

    タスク 推奨アクション ツール
    言語統一 Cloud Translation APIで全レビューを1言語に統一 Cloud Translation API
    欠損値処理 Dataflowでテキストデータを前処理、欠損補完 Dataflow
    データラベリング Vertex AI Data Labeling Serviceで満足度ラベル付け Vertex AI Data Labeling

    ④ 金融業界でのローンデフォルト予測(数値データ中心)

    目標:AutoMLでローンデフォルトを予測するために、金融指標データを準備する。

    タスク 推奨アクション ツール
    特徴量選択 BigQueryで最も関連性の高い金融指標を選定 BigQuery
    欠損値処理 Dataflowでインピューテーションを適用 Dataflow
    特徴量管理 Vertex AI Feature Storeで選択した特徴量を管理 Vertex AI Feature Store

    🎯 試験対策のポイント(EXAM FOCUS)

    • BigQueryを活用して、特徴量の重要度分析やカテゴリカルデータのエンコーディングを行いましょう。
    • Dataflowを使って、欠損値の補完(インピューテーション)やデータクレンジングを実施しましょう。
    • 数値データの正規化には、Cloud Dataprepを使用するのが効果的です。
    • テキストデータ分析では、Cloud Translation APIで多言語データを統一し、解析の一貫性を確保しましょう。

    ⚠️ 注意すべき落とし穴(CAUTION ALERT)

    • Cloud StorageCloud SQLはあくまでデータの保管先であり、データ準備プロセス(前処理)の一部ではありません。これらを選択肢に入れる際は目的をよく確認しましょう。
    • TensorFlowは画像やテキストデータの拡張(データ増強)には有効ですが、AutoMLのタブラー形式データ準備では不要です。無駄な工程を増やさないようにしましょう。