タグ: Healthcare API

  • 【Google認定MLエンジニア】業界特化API(Industry-specific API)実装ガイド

    【Google認定MLエンジニア】業界特化API(Industry-specific API)実装ガイド

    業界特化API(Industry-specific API implementation)は、Document AI、Retail API、Healthcare API、Media Translation APIなど、特定の業務用途に最適化されたGoogle CloudのAPI群を使って、スケーラブルで責任ある機械学習ソリューションを構築・展開するスキルを問う領域です。

    以下では、各APIの目的、設計パターン、推奨構成、よくある誤りを体系的にまとめます。


    📄 1. Document AI API(文書解析)

    ✅ 推奨アーキテクチャ

    • Cloud Storage にスキャン文書を保存
    • Cloud Functions でアップロードをトリガーし、自動処理
    • Dataflow で事前処理(画像補正やOCR補助)
    • BigQuery に結果を格納し、分析基盤と連携

    🚫 非推奨アクション

    • Vertex AI Model Monitoring(Document AI はマネージドサービスのため不要)
    • Cloud Run を使ったリアルタイム処理(Cloud Functions で十分)

    🏷 試験で問われやすいポイント

    • Cloud Functions でスケーラブルな自動処理を実装
    • BigQuery に格納して分析可能性を担保

    ☁️ Cloud Functions と Cloud Run の違いガイド

    Google Cloud の Cloud FunctionsCloud Run はどちらも「サーバーレス」な実行環境ですが、用途や設計思想が異なります。以下にそれぞれの特徴と違いを整理します。


    🌩 Cloud Functions と Cloud Run の違いまとめ

    項目 Cloud Functions Cloud Run
    🧭 主な用途 単機能のトリガー型処理(イベント駆動) コンテナを使ったHTTPアプリ/API運用(柔軟な構成)
    ⚡ 起動方式 イベント駆動型(例:Cloud Storage にファイルがアップされた時) HTTPリクエスト駆動型 または常駐処理
    🏗 構築単位 関数(Function)単位のコード 任意のコンテナイメージ(アプリごと)
    🛠 言語/実行環境 Node.js, Python, Go など指定されたランタイム 任意のランタイム(Dockerで動けばOK)
    📦 実行内容の自由度 比較的限定的(状態を持たない1関数) 高い(マルチエンドポイントAPIやフレームワークもOK)
    🌐 外部からのアクセス HTTPまたはPub/Sub等のイベント経由 HTTP(WebアプリやAPI向け)
    🚀 起動の速さ(Cold Start) やや速い(関数なので軽量) やや遅め(コンテナ全体起動)※改善中
    🔒 セキュリティ/認証 IAM & イベント権限制御 IAM & リクエストレベルの認証(細かい設定可能)
    💰 課金単位 関数の実行時間+呼び出し回数 コンテナ稼働時間(秒単位)とメモリ消費量

    ☑ どちらを使うべきか?

    ✅ Cloud Functions が向いているケース
    • Cloud Storage / PubSub / Firestore など Google Cloud内のイベントに反応したい
    • 「何かが起きたら即処理したい」タイプの処理
    • 簡単なAPIやWebhook(1関数で完結)
    • コードだけでOK、Dockerを使いたくない場合

    例:

    • ファイルアップロード後に自動OCR処理
    • Pub/Subメッセージ受信時にデータ変換

    ✅ Cloud Run が向いているケース
    • 複雑なAPIロジックWebアプリをサーバーレスで運用したい
    • 自前のライブラリや依存関係を含んだ Docker環境 で動かしたい
    • 状態を保持する処理(例:セッション、キャッシュ)や 非同期ジョブ管理
    • 外部からHTTPで 柔軟なルーティング制御 が必要な場合

    例:

    • FlaskやExpressで構築したWebアプリ/API
    • 長時間かかる機械学習バッチ処理
    • 非同期なトランスコーディングや画像生成

    🧠 試験対策的な補足

    試験でよく問われる判断基準
    ✅ Cloud Functions は「リアルタイム処理」や「トリガー処理」に向いている
    ✅ Cloud Run は「コンテナを用いた柔軟なサービス設計」に向いている
    ⚠ Cloud Functions で済むケースに Cloud Run を使うと「過剰設計」になりがち

    🛒 2. Retail API(商品推薦)

    ✅ 推奨アーキテクチャ

    • BigQuery に蓄積された商品データを Cloud Functions で Retail API に送信
    • 推薦結果は BigQuery に保存して BI やレポートに活用
    • Cloud Operations Suite(旧 Stackdriver) で API の使用量・エラー率をモニタリング

    🚫 非推奨アクション

    • Vertex AI でバイアス検出(Retail API 自体がブラックボックスなので過剰)

    🏷 試験で問われやすいポイント

    • Vertex AI を無理に使わない
    • リアルタイム性を Cloud Functions で担保

    🏥 3. Healthcare API(患者記録分析)

    ✅ 推奨アーキテクチャ

    • Cloud SQL に格納されたデータに対し、Cloud Functions で自動トリガー処理
    • IAM+暗号化 によるセキュアなアクセス制御
    • 結果も Cloud SQL に保存し、厳格なセキュリティとプライバシー保持

    🚫 非推奨アクション

    • Dataflow での前処理(Healthcare API は多様な形式を直接受け付け可能)
    • CI/CD構築(分析用途には不要)

    🏷 試験で問われやすいポイント

    • セキュリティ・暗号化・IAMがキーワード
    • Healthcare API は前処理不要

    🎬 4. Media Translation API(字幕翻訳)

    ✅ 推奨アーキテクチャ

    • Cloud Storage にアップロードされた字幕ファイルを Cloud Functions でトリガー
    • BigQuery に翻訳結果を保存して多言語対応の効果を分析
    • Cloud Operations Suite で翻訳精度やAPI使用量をモニタリング

    🚫 非推奨アクション

    • Vertex AI での翻訳モデル構築(Media Translation API 単体で十分)
    • Cloud Run の活用(Cloud Functions で事足りる)

    🏷 試験で問われやすいポイント

    • Vertex AIを使わず、API単体での完結性を重視

    🛑 全体のCAUTIONまとめ

    ケース よくある誤答 正しい理解
    Document AI Vertex AI Monitoring 管理されたAPIには不要
    Retail API Vertex AIでバイアス検出 過剰な構成
    Healthcare API Dataflowで前処理 不要。APIが処理可能
    Media Translation Vertex AIで翻訳精度強化 APIで十分

    ✨まとめ:業界特化API実装の3大ポイント

    1. Cloud Functions はトリガー型のリアルタイム処理に最適
    2. BigQuery は分析・統合のハブとして定番
    3. Vertex AIやDataflowの利用はケースバイケースで必要最小限に