カテゴリー: Google認定MLエンジニア

  • 【Google認定MLエンジニア】特徴選択と特徴量エンジニアリング(Feature Selection and Engineering)ガイド

    【Google認定MLエンジニア】特徴選択と特徴量エンジニアリング(Feature Selection and Engineering)ガイド

    Google Cloud の BigQuery ML 環境をベースにした「特徴選択と特徴量エンジニアリング」の戦略を体系的に整理します。この知識は、機械学習モデルの精度向上・計算効率の最適化・スケーラビリティの担保に不可欠です。


    🧩 1. 特徴量エンジニアリングの目的

    目的 説明
    モデル性能の向上 意味のある新しい特徴量の作成により、モデルの精度を高める。
    データのスケーラビリティ 一貫した処理・自動化されたパイプラインにより、大規模データへの対応を強化。
    学習効率の向上 無駄な特徴を削減し、学習コストを下げる。

    🔧 2. BigQuery ML における主要なエンジニアリング手法

    2.1 欠損値への対応

    • 方法: SQLベースで IFNULL() などの関数を活用
    • 注意点: 欠損値処理は予測精度に直結するため、事前処理で徹底的に対策

    2.2 カテゴリカルデータの変換

    手法 概要 適用場面
    One-Hot Encoding 各カテゴリを0/1の列に展開 少数カテゴリ
    Label Encoding ラベルを数値に変換 順序付きカテゴリ
    Feature Hashing 高カーディナリティカテゴリを効率的に表現 大量のユニーク値がある場合(例:郵便番号)

    🧠 3. 特徴選択(Feature Selection)

    3.1 正則化による選択

    • Lasso回帰(L1正則化)
      • 重要でない特徴の係数をゼロにする
      • MODEL_TYPE='linear_reg', L1_REG を指定

    3.2 Feature Importance Metrics

    • 方法: ML.FEATURE_IMPORTANCE関数で重要度を算出
    • 目的: 予測精度に寄与する特徴量の可視化と選別

    🧪 4. 特徴量のスケーリングと変換

    処理 BigQuery ML内での対応 備考
    Standard Scaling ❌非対応 Dataflow等で前処理が必要
    正規化(Normalization) ❌非対応 外部パイプラインで実施

    🧬 5. 新たな特徴量の生成

    • SQLによる派生特徴量の生成

      • 例: 売上 = 単価 × 数量
      • 実装: CREATE MODELTRANSFORM を活用(SQLで表現可能)
    • Feature Crosses

      • 複数カテゴリカル特徴の掛け合わせ
      • 特定の組み合わせパターンの意味合いを捉える

    🤖 6. 自動化とパイプライン化

    方法 内容 利点
    Dataflow + Apache Beam 前処理パイプライン構築 一貫性と再現性の担保
    Vertex AI Pipelines 特徴量処理・モデル学習の自動化 スケーラブルなMLワークフロー構築

    ⚠️ 7. 注意すべき非対応機能

    機能名 状況 代替手段
    PCA(主成分分析) ❌未対応 手動で相関の高い特徴を削除する等
    Recursive Feature Elimination (RFE) ❌未対応 LassoやFeature Importanceで代替
    ハイパーパラメータチューニング ❌未対応 外部ツール(Vertex AI等)を使用

    ※ 現在のBQMLはPCAにネイティブ対応しています

    • 過去(〜2022年頃まで):BQMLにはPCA(主成分分析)は未対応でした。
    • 現在(2023年〜):BQMLは CREATE MODEL で MODEL_TYPE=’pca’ を指定することで、ネイティブにPCAモデルを構築可能になっています。

    ✅ 試験対策のためのまとめ

    試験フォーカス 警告アラート
    欠損値処理・特徴量変換・SQLによる生成 PCAやRFEは BigQuery ML に直接は存在しない
    正則化(Lasso)やFeature Importance 正規化・スケーリングはBigQuery ML内では未サポート
    Feature Hashingや自動化パイプライン構築 k-means は欠損値処理・次元削減には不向き

    📌 おすすめの学習順序(習得ステップ)

    1. SQLによる特徴量生成
    2. 欠損値処理とカテゴリ変換
    3. Lasso回帰・Feature Importanceの理解
    4. Feature Crosses・Feature Hashingの応用
    5. Dataflow/Vertex AIによる自動化

  • 【Google認定MLエンジニア】BigQuery MLによる実践的なモデル構築・評価・運用ガイド

    【Google認定MLエンジニア】BigQuery MLによる実践的なモデル構築・評価・運用ガイド

    ✅ はじめに

    BigQuery ML(BQML) は、Google Cloud 上でSQLベースに機械学習モデルを構築・運用できる強力なツールです。 このノウハウ記事では、Googleの認定試験(Professional ML Engineer)や現場で問われるスキルをベースに、

    • データ設計
    • 特徴量エンジニアリング
    • モデル選定
    • 公平性
    • 自動運用(MLOps)

    といった観点から、構築すべきモデルの判断力・手順をわかりやすくまとめました。

    📂 適切なモデル構築ステップ(全体像)

    1. データの収集・更新設計
    2. 特徴量の抽出と前処理
    3. モデルアルゴリズムの選定
    4. 評価とリトレーニング戦略
    5. 公平性と責任あるAIの実装
    6. デプロイとスケーラブル運用

    各フェーズで BQMLがどこまでカバーできるか/どこで外部ツールが必要か を理解するのが重要です。

    ① データの更新性・鮮度を保つ

    🧠 ポイント

    • モデル精度は 「最新データ×継続的学習」 が命
    • 特に「離脱予測」「購買予測」「レコメンド」などは時間とともにデータが陳腐化

    ✅ 推奨する構成

    要素 ツール
    データ自動更新 BigQuery Data Transfer Service (BQ DTS)
    月次リトレーニング Cloud Scheduler + BQML で retrain

    ❌ よくある誤り

    • Cloud Functions でデータ取り込みを手作業スクリプトでやる(冗長・非効率)

    ② 特徴量エンジニアリングは「BQ内完結」が基本

    BQMLには、次のような特徴量処理機能が組み込みで提供されています。

    機能 用途
    FEATURE_SELECTION 重要な特徴量を自動選定(高次元対策)
    FEATURE_CROSS カテゴリ変数同士の掛け合わせ
    STANDARD_SCALER 数値のスケーリング(勾配学習安定化)

    🔧 実務Tips

    • 顧客の「性別×年代」などの交差は FEATURE_CROSS
    • 価格や視聴回数のスケーリングは STANDARD_SCALER

    ❌ NG判断

    • 「Cloud Functions + Python」で前処理を書く必要は基本なし
    • 「Vertex AI Workbench」で前処理だけ行うのは冗長

    ③ モデルの選び方(タスク別)

    🎯 BQMLで選べる主要モデルと適用ケース

    モデルタイプ 主な用途
    LINEAR_REG 数値予測(売上・温度・故障時期)
    LOGISTIC_REG 二値分類(購入/非購入、離脱/継続)
    ARIMA_PLUS 時系列予測(週ごとのPV、売上)
    MATRIX_FACTORIZATION レコメンド(ユーザー×アイテム)←🆕 推薦問題対応

    🚨 注意点

    • 「Vertex AIを使えばいい」はNG。BQMLでできるならそれがベストプラクティス
    • モデル選定の根拠が重要。回帰 vs 分類 vs 推薦の判断力を持つこと。

    ④ 評価・自動再学習・モニタリング

    ✅ モデル精度の評価指標(BQML)

    ML.EVALUATE関数で AUC、RMSE、Log Loss などを確認

    🔁 再学習スキーム

    • Cloud Schedulerで月次バッチ retrain を自動化
    • 特徴量エンジニアリング+再学習=MLOps構築の第一歩

    🧠 高度化オプション

    • Vertex AI Model Monitoring で、モデルバイアスや精度の劣化を継続監視
      • 特にローン審査・医療・HR分野で重要

    ⑤ フェアネスと責任あるAIの実装

    ✅ なぜ必要?

    • 特定の属性(年齢・性別・国籍)に偏った予測を防ぐため

    推奨実装

    項目 方法
    バイアス検出 Vertex AI Model Monitoringで属性ごとの予測傾向を監視
    定期レビュー チームで公平性のダッシュボード確認(特にモデル更新時)

    ❌ 誤解されがち

    • 「暗号化」はセキュリティ対策であって、フェアネスとは別問題

    ⑥ モデルのデプロイとスケーラブル運用

    シナリオ 推奨手法
    Webアプリからリアルタイム予測 Cloud Run で BQMLモデルをサービング ←🆕 推薦システム問題で出題
    モデルの保存 BigQuery ML内で自動的にバージョニング管理される(Cloud Storageへの保存は不要)

    ✅ まとめ:試験や実務で役立つ判断軸

    判断軸 YESなら選択
    データがBigQueryにある → BQMLで処理
    前処理がSQLでできる → BQML内で完結させる
    モデル更新は月次でOK → Cloud Scheduler+BQML retraining
    公平性が求められる → Vertex AI Model Monitoring で監視
    推薦が必要 → MATRIX_FACTORIZATION
    リアルタイム推論が必要 → Cloud Run を使う
  • 【Google認定MLエンジニア】Google Cloud 機械学習エコシステムの主要プロダクト一覧

    【Google認定MLエンジニア】Google Cloud 機械学習エコシステムの主要プロダクト一覧

    • データ収集/整形
      • Cloud Storage / PubSub / Dataflow / Dataprep

    • 前処理/特徴量管理
      • BigQuery / Dataform / Feature Store

    • モデリング
      • BigQuery ML / Vertex AI Workbench / AutoML / Custom Training

    • パイプライン/MLOps
      • Pipelines / Model Registry / Experiments

    • デプロイ・推論
      • Vertex AI Prediction / Edge Deployment / Matching Engine

    こんなときはどれ?

    状況 おすすめツール
    SQLだけで予測モデルを作りたい BigQuery ML
    ノートブックで深層学習したい Vertex AI Workbench
    ノーコードで画像分類モデルを作りたい AutoML Vision
    本番運用のMLOpsを整備したい Vertex AI Pipelines + Model Registry
    特徴量を複数チームで共有したい Vertex AI Feature Store